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Distributed Wiener-Poisson Control

by Howard Weiner

University of California, Davis
and Stanford University

1. Introductio. Let W(t), t > 0, W(O) - 0 be a standard Wiener

proess, independent of N(t), t > 0, N(0) -0 a Poissoft process with

(constant) unit jumps, and IN(t) - ).t. t > 0. Let their sipm fields be

M(t) -ina(W(s), 0< s <) and C(t) -o(s), 0:Ss t). Let $(y) be

a function and L(S(Y)) a differential operator on g, for example,-2

L(g(Y)) - a(y) 'L"2 9(Y) + d(y) (y) + C(Y)g(Y)-

Let X(t,y) be a stochastic process depending on t 2 0 and a parameter

y, such that (for I-u xdj

(1.1) X(ey) - L(X(ty)) + u(X(t,y),y) +-d + dk~t)

x(0y) - S(O) mx.

Wit dU(t) white noise, dN(t) incremental Poisson jump process and where
"dt dt

u(X(t,y),y) is measurable with respect to a(F(t) U G(t)) (i.e. u is

non-anticipative) and satisfies, for A a constant, and 3 > 0 a

constant,
(1.2) 1 u-Aj < B,

a11 0 < t T, 0 < T <a c onstant. The cost function for a given u

satisfying (1.2) is, for cr > 0 a constant,pT -ars Z2(usls
(1.3) J(uy) " J s (X(u,s))ds.
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The object is to characterize the optimal u for which J is mitmized.

The cases T < a and T - w are treated separately. The method employs a

suitable Bellman equation, a mxiumum principle for parabolic partial

differential-dLfference equations and the Ito rule. The method foll s [43.

2. Finite Interval Control.

Let T< w. DefLne, for 0:5 t < T,

(12.1) V a V(X.t,y) - iu r*.-ora 1(1 2(sy))ds
IuAj < "0

and X(Oy) - s(y) - x.* t rh .t-,h t~h

By Writing mJu + j J t , heuristic arguments (123, pp. 179-180)0 J0 h

yLeld a Bellman equation

(2.2) + Luf (uV) + L($(y))V x + .1 V.

+ X(V(Z+l,t,y) - V(x,t,y)) 0 0,

with u - u(x).

On heuristic grounds, a solution to (2.2) is sought such that

(2.3) x2 + [(A-3) + L($(y))]V
.4x 2 m Vt

+ I(V(z+lt,y) - V(l,t,y)) - 0

for V > 0, x> b(t,y)

(2.4) + [(MA) + L(g(y)))V + iv - e'v-v t

+ ,l(V(z+l,t,y) - V(xwtpy)) - 0

for V <0, z< b(t,y)
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The object is to characterize the optimal u for which J is minimized.

The cases T < a and T - m are treated separately. The method employs a

suitable Bellman equation, a maximum principle for parabolic partial

differential-difference equations and the Ito rule. The method follows (43.

2. Finite Interval Control.

Let T<o. Define, for O: t<T,

(2.1) V m V(xit,y) - mL f e e9 (Z (sy))ds
Ju-A) S 3 0

and X(Oy) - S(y) - z.
t h t+h t+h

By writing J mf + jh r , heuristic arguments ([21, pp. 179-180)

yield a Delian equation

(2.2) x2 + inf (uV,) + L(S(y))V +Y " aV - VT

lu-Al: B x 2

+ ).(V(lZ+,t,y) - V(x,t,y)) a 0,

with u - u(x).

On heuristic grounds, a solution to (2.2) is sought such that

(2.3) x2 + [(A-3) + L(g(y))]V + V - V-V

x 2 Vyu t

+ k(V(X+lt,y) - V(z,t,y)) - 0

for V > O, z > b(t,y)

-5 and

(2.4) x2 + ((hid-) + L(S(y))V + V - V-Vt

+ (V(x+-,ty) - V(x,t,y)) -0

for V <0, x< b(t,y)

* 2
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where b(t,y) is obtained from the following conditions, letting
,.4

Ivv1 in (2.3) andVuV 2  in (2.4) for 0< t< T, all y:

V I(b(t,y), ,y) - V2 (b(ty),t,y)

V l'(b(ty),t,y) - V 2,x(b(t.y),t,y) - 0

(2.5) V1(x,O,y) - V2 (xO,y) - 0.

(2.5a) V lxx(b(t,y),t,y) > 0

For R constant, denote

(2.6) J(x,ty,R) u +'O Z((R+L(s(Y))s + W(s) + N(s) + x) 2ds.
0

A direct computation verifies that J(x,t,yA-B) is a particular

solution to (2.3) and J(x,t,y, h+B) is a particular solution to (2.4).

AssumtIon 1. There Is a non-zero solution 13 (x,t,y) with H1 (x,O,y) - 0

to
-69 + (A-B + L(g(y))Hx + 1 - B-).(Rlx+l,t,y)  H(x,t,yp- 0

such that

N 1(z,t.y) = Ole p )

(2.7) .l(x.ty) - 0(73)

for som > 0, > 0, all t,y, as X ,.O

Also, there Is a non-zero solution (-.t.y) with lil-.O0y) - 0,"'.vy WihtOI ) 0

to1
-oH + (A+ + L(y)))% + y .

+ I(U(z+lt,y) - U(x,ty))- 0

such that

2(x,,y) - Ol(mx)

7!
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(2.8) H2 n(xty) -o )

for some 8 > 0, X > 0, all ty, as x -

One may then write

(2.9) Vl(x,t,y) - J(zty, A-B) + H1 (x,t,y)

(.1.0) V l,t~y) - Jlx~t,y,A+Bar*' a(x,t,y)

e• gum b(tY) is determined from (2.5), (2.9), (2.1).

This motivates

Theorem I Assume the conditions and results of sections 1,2 hold for

0<T<.

The optimal u0 may be expressed as{ A-B if X 0(t,y) > b(T..t,y)

(2.11) u0 (XO(t,y),y) -
"1

"+B if X0 (ty) : b(T-t,y)

where b(t,y) is obtained from (2.5), (2.9)-(2.10) and

(2.12) Xo0 (ty) - L(X0 (t.y)) + "0 (X0(tY), ) 
+  t +

dt: dt

Swith Xo(OY) - S() x.

Proof Lee D-VM.

From (2.3), (2.4) (omittiug (ty) arguments)

(2-13) (h±I + L(g(y))) D~ + f1 DD-, -- IDxl

where the argument on the left side of (2.13) is x.

4
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From (2.6),

(2.14) J (x,t,y, A±I) > 0.

Assumption 1, (2.7)-(2.10), (2.14), imply that

(2.15) V ,,(xt,y) > 0, for each t,y, as z .

and

(2.16) V2 ,, (x,t,y) > 0, for each t,y, as x 4 -w.

For fixed (t,y), (omitting the fixed arguments (t,y)), suppose

mhare existed a finite number r > b, and a number P, 0 < P < I and such

that using (2.5a),

(2.17) D(x) < 0, b < r - < x < r, D(r) - 0,

and

(2.17) D() > 0, x > r,

using (2.15). It follows that for x > r-0, the left side of (2.13)

is negative. By ([11], Lemma 1, p.34 ), D cannot have a negative minimum

for z> r-P, a contradiction to (2.17), since (2.15) and (2.5a) hld.

Hence D > 0 for x > b.

For b-i < x < b, a similar argument using (2.16) and that D(x) > 0 for

b < x <b + I yields that D(x) > 0 for b-i < x <b. Continuing by iteration,

D(x) > 0 for x <b, so that D > 0 for all (x,ty).

Also, V,(b(t)) - 0 by (2.5), implying that (2.3),(2.4) (2.9), (2.10)

is a solution to the Bellman equation (2.2). To show that u0  is optimal,

define

(J 2-19) K((ltYl,t,y) 0 V(X(t,y),T-t,yle "Ot

for 0:9 t<T.

Noting that K(X(0,y),O,y) a V(x,T,y) and K(X(T,y),T,y) - 0, the Ito

turle yields that ([21, pp. 125-126) for a u and corresponding X(t,y),

5
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(2.20) Tfaas X2 (3y)ds - V(x,T,y).1' 0

J-abT(-V(s) ,T-s,y) - V (X(sy),T-S.y)

0

+ Laf(u(X(s~y).y) V (1(s3y),T-s~y))
lu-Al <

+1 V (X(s~y),T-3,y) + L(g(y3r)V (X(s.y),T-B.y) + 2(8y))4s
2 xx x

+ j -3VXsY,T-a,y)dN(,)
0

+ T as (X(s~y).T-3y)dW(S)

+~~~~~~ ~ ~ Toa lXBY.~v((,)TBY uf (u(X(sjqY).Y)V (X(s.Vy)T-3y))d1 0' x u-Al...SBx

The fourth Integral on the right of (2.20) is non-negative. Upon taking

expetations of (2.20), the third Integral an the right is zero, and one

obtain* (omitting the arguments from the first and fourth Integrals, and

combining the first and second Integrals, all on the right)

(2.21) 6f0Zcx 2 (S,Y))ds - V(z,T,y)-
0

it j -s -V + mEf (OV )+ L(g(y))V +-I 1X2
0 1 u-Aj <B x 2 x

+~ )(V(Z(s)+l)-V)ds

+ F 0 a~u - inf (uV%))d3.

0 1 II1<

The first Integral on the right of (2.21) is zero by (2.2)-(2.4), and

'4 6
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the second integral is non-negativre, and is zero for u u., X X0

Hence (2.21) yields that

(2.22) J' e -a E(X 2 (,y))ds > V(x,T,y)

and

4(2.23) 0e ahZ(zj(sy))ds - V(x,T,y),

Sf: iad (2.22), (2.23) imply u0 is optimil.

3. Infinite interval Control

Assume the conditions of section 1 hold for T -a so that (1.3) is

now

(3.1) J(u,y) a -sECK2 (s~y))ds.
0

Define

(3.2) V a V(X,y) - mi r-as 2
!u-AJ < 3 Jo E(X (say))ds

with X(OMy) - S(y) amX.

By Writing -j+fi heuristic arguments ((21, pp. 179-180)

yield a Bellman equation

(3.3) Z .V(z,y) +.LVzy l (~yV(~)

+ L(s(y))V (x.Y) + X(V(Zl,y)-6V(3xy)) -0.

On heuristic grounds, a solution to (3.3) in sought such that (omitting

eke (zXy) argumnts)

7
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(3.4) x2 - uv + I V + (A-B + L(S(y)))V + )(V(x+L.y)-V) - 02 xx x
:9

for Vx > O, x> b(y)

and
x21

(3.5) 2 -av + 'v + (A4+L(S(y))V + X(V(X4-Ly)-V) - 0

for V < o, z < b(y),

vherv b(y) i obtained from the following matching conditions, letting

VoV 1 in(3.4) and Vm V2 in (3.5):

V1 (b(y),,y) - V2 (b(y),y)

(3.6) V Ix(b(y),y) - V2 ,x(b(y),y) - 0

(3.6a) Vlx(b,y),y) > 0

For R constant, denote

(3.7) J(x.y.R) - WO'SZ((sL((y))) s +W(,)+N(s)+x) 2 a.

0

A computation verifies that J(x,yA-I) is a particular solution to

(3.4) and J(x,y, AI) is a particular solution to (3.5).

, Assumption 2. There is a non-zero solution 11 (x,y) to (omitting (x,y)

argument)

-@11 + (A-3 + L(g(y)))B x R = + 1(1(z+.,y)-N) 0 0

such that

a (xY) - O(eP)

(3.8) Iju(ZV) - O(eZ)

8



for some p 0, 8 > 0, for each y, as x _. Similarly, there is a

non-zero solution H2 (x-y) to

-all + (A+B + L(g(y)))H + 1 H + 0(H(x+1,y)-R) - 0

such that

H2(x'y) - o(0'.)

(3.9) R 2,n(xy) - 0(e x )

for some a > O, X > 0, for each y as x-.-.

Then one may write

(3.10) V1 (xy) - J(x,y,A-B) + H (X,y)

(3.11) V2(x,y) - J(x,y,A+B) + B 2 (xy)

and aasmime that b(y) is detemined from (3.6), (3o10), (3-.11).

As in Section 2, one then obtains

*4

Theorem 2. Assume that the conditions and results of sections 1.3 hold

for T -. w,

The optimal u, may be expressed as

A-B if x1(t,y) > b(y)

(3.12) u I (XjCy),y) -i

LA+Bif XI ( ,) b(y)

where b(y) is obtained from (3.6), (3.10)-(3.11) and

: " +, ... . .........................-....... •



x't) dW(tj +N WO

(3.13) xit(t~y) - L(X1(t,y)) + dt +dt

and X1 (O,Y) - 8(y) u x.

Proof. The proof follows that of Theorem 1.

Let D - V * From (3.4), (3.5) (omitting (x,y) arguments)

VU

(3.14) (AB + L(S(y)))Dx + D= -aD -D - -2 - )D(XI)

where the argument on the left side of (3.14) is x.

From (3.7),

,,(3.1.5) J (x,y,A ) > 0.S.
Assumption 2, (3.8)-(3.11), (3.15) imply that

(3.16) V (x,,)>O for each ty, as x,
%lEI

and

(3.17) V2,U(x,y) > 0 for each ty, as x -.

By an argument Identical to that given in the proof of Theorem 1,

-5., using the appropriate naxamum principle (11, Theorem 18, p. 53), it

follows that D(x,y) 0 for all (xy). Since Vx(b(y),y) - 0
10
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by (3.6), it follovs that (3.4), (3.5), (3.10), (3.11) constitute a

solution to the Bellman equation (3.3). To show that u is optimal,

define

(3.20) K(X(t.y),y) -v(X(t,y),y).' t

for t > 0.
JR

Noting that K(X(0,y),y) - V(x,y), one obtains from the Ito rule

((21, pp. 125-126) for a u and corresponding x(t,y),(omitting (X(s,y),y)

arguments on the right side),

(3.21) fO 'a s X2('ay)ds + V(X(ty),y)e - V(x,y) -
0

f 8.-'s(X2 8.0y -v + L (UV, + L ,,))V +- V do

0 1 1u-Aj : 'I =

* t o ' s ( V

a a (uV - iml (uv ))ds
0 1 u-Aj < B

+j t e-a (V(X (s ,y), )dN (s)
0

+ -asv dW(s).
f O 0

The second integral on the right of (3.21) Is non-negative. Upon taking

expectations In (3.21), the fourth term on the right is zero, and coubLuLng

the first and third terms on the right yields that

11
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* (3.22) ,y))ds + E(V(X(ty),y))' t-V(x,y) -
0 -

Ej eas" (X 2 (sy)-aV + Uif (uV ) + L(S(y))V + 2V
0 I u-AI :5B x 2 x

+ ).(V((s)+ly)-V)ds

+ EfJo'(uV - ut, (Uv ))ds.
0 K u-AKDS

By (3.3), the first term on the right of (3.22) in zero.

The second term on the right of (3.22) is non-negative, and is zero for

Su - u1 . By Assumption 2, (3.7)-(3.11), it follows that, for (xy) fixed,

there is a constant D > 0 such that

(3.23) E(V(X(ty),y))e-*t < E(1xl+(AI+B4.L(g(y))e+w (t)_.M(t))2 e u -a44e-t

or
(3.24) E(V(X(ty),y)e " t 2 C(-,y)t e

for some positive constant C(z,y).

Letting t -o In (3.22), by (3.24) one obtains

*(3.25) ~e-WE(&(Say))s > V(X.Y)

and

(3.26) Je' (X(,y))ds - V(zy),

so that (3.25), (3.26) imply that u, Is optimal.

12



4. Additional Constraints

Certain additional constraints may be incorporated and treated by

these methods. An illustrative example in the case T <- is the added

constraint

(4.1) EC(X2 (a)) - C

where 0 < a < T and C > 0. This may be handled by adding the condition

(4.2) Vt(x-t y)t. - C

to conditions (2.5), and proceeding as before. See (3J for another approach.

13
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